

DFN封裝單通道觸摸感應開關

產品概述

SP8323D是單按鍵觸摸檢測芯片,此觸摸檢測芯片內建穩壓電路,提供穩定的電壓給觸摸感應電路使用,穩定的觸摸檢測效果可以廣泛的滿足不同應用的需求,此觸摸檢測芯片是專為取代傳統按鍵而設計,觸摸檢測PAD的大小可依不同的靈敏度設計在合理的範圍內,低功耗與寬工作電壓,此觸摸芯片非常適用於智能穿戴、指紋鎖、藍牙耳機、玩具等產品上面。

產品特性

- 工作电压: 2.0V 至 5.5V
- 內建穩壓電路提供穩定的電壓給觸摸檢電路使用
- 工作電流:低功耗模式下典型值1.5uA,快速模式下典型值5uA(VDD=3V,無負載)
- 上電0.5秒快速初始化
- 環境自適應功能,可快速應對觸摸上電等類似應用場景
- 芯片內置去抖動電路,有效防止由外部噪聲幹擾導致的誤動作
- 通過外部引腳配置同步/保持模式、高/低電平有效輸出
- 封裝: DFN-6

產品應用

- 藍牙耳機
- 指紋鎖
- 智能穿戴

Website: http://www.siipower.com

• 玩具

圖1.DFN-6 2*2封裝圖

方块圖

圖2.SP8323D内部方块圖

訂購信息

訂購型號	封裝	包裝	印章
SP8323DD6-LF	DFN-6	Tape and Reel / 3000 units	SP8323

引腳功能描述

註:底部焊盤接GND

圖3.SP8323D引腳定義 (頂視圖)

引腳功能描述

管腳名稱	管腳位置	描述
TCH	1	觸摸輸入端口
GND	2	負電源供應 , 接地
OUT	3	CMOS輸出腳
HLD	4	輸出保持或同步模式選擇
VDD	5	正電源供應
OLH	6	輸出高電平有效或低電平有效選擇

電氣特性

最大絕對額定值(所有電壓以GND為參考)

參數	符號	額定值	單位
電源供應電壓	V _{DD}	-0.3 ~ 5.5	V
輸入/輸出電壓	V _I /V ₀	GND-0.3 ~ VDD+0.3	V
工作溫度	V _{OP}	-20 ~ 70	°C
儲存溫度	V _{STG}	-20 ~ 125	°C

DC/AC特性(所有電壓以GND為參考, VDD=3.0V, 環境溫度為25℃)

參數	符號	測試條件	最小值	典型值	最大值	單位
工作電壓	V_{DD}		2.4		5.5	V
內部穩壓電路輸出	V_{REG}		2.2	2.3	2.4	V
数大工 佐康达	Las	快速模式		5		uA
静态工作電流	I DD	低功耗模式		1.5		uA
輸入埠	VIL	輸入低電壓	0		0.2	V _{DD}
輸入埠	VIH	輸入高電壓	0.8		1.0	V_{DD}
輸入埠灌電流	I OL	V _{DD} =3V, V _{OL} =1.0V		6.7		mA
輸出埠灌電流	I oh	VDD=3V, VOH=2.0V		5.1		mA

功能描述

1、靈敏度調整

PCB上接線的電極大小與電容之總負載,會影响靈敏度,故靈敏度調整必須符合PCB的實際應用。 SP8323D提供壹些外部調整靈敏度的方法。

1.1 調整檢測板尺寸的大小

在其它條件不變的情況下,使用較大的檢測板尺寸可增加靈敏度,反之則會降低靈敏度;但電極尺寸必須在有效範圍內使用。

1.2 調整介質(面板)厚度

在其它條件不變的情況下,使用較薄的介質可增加靈敏度,反之則會降低靈敏度;但介質厚度 必須在最大限制值以下。

1.3 調整Cs電容值(請參考下圖)

在其它條件不變的情況下,若未在觸摸PAD對GND接上Cs電容時,靈敏度是最靈敏的,Cs電容在可用範圍內(OpF~75pF),Cs電容值越大其靈敏度越低。

圖4.SP8323D Cs電容位置

2. 同步模式,保持模式(利用HLD腳位選擇)

HLD 腳位:選擇保持模式或者同步模式輸出,引腳懸空默認下拉為低電平,置為同步模式。

設置HLD=0,則選擇同步模式,此時PIN腳OUT的狀态與觸摸响應同步:只有檢測到觸摸時有輸出 响應:當觸摸消失時,OUT狀态恢復為初始狀态。

設置HLD=1,則選擇保持模式,此時PIN腳OUT的狀态受在觸摸响應控制下保持,當觸摸消失後仍 保持為响應狀态;再次觸摸並响應後恢復為初始狀。

3. 輸出模式 (利用OLH腳位選擇)

SP8323D可以配置多種輸出模式

HLD	OLH	端口OUT選項特性
0	0	同步模式 , CMOS高電平有效
0	1	同步模式 , CMOS低電平有效
1	0	保持模式,上電狀态為0
1	1	保持模式,上電狀态為1

註:1指配置為電源電壓;0指配置為0V電壓

4. 選項腳位

外部配置引腳懸空時,配置位自動設置為默認狀态。

功能選擇腳位	上電後的初始狀态
HLD	0
OLH	0

5. 快速模式

SP8323D工作在快速模式時,觸摸响應時間約40ms。在低功耗模式時,觸摸响應時間約160ms。

6. 按鍵最長輸出時間

若有物體蓋住檢測板,可能造成足以偵測到的變化量,為避免此情況,SP8323D設有定時器對檢測 器進行監控,定時器為最大輸出持續時間,其大約為10s,當檢測到超過定時器時間,系統會回到 上電初始狀态,且輸出變成無效,直到下壹次檢測。

6

典型應用電路

圖5.SP8323D 典型應用電路圖

布板建議

- 1. 在PCB上,從觸摸板到IC接腳的線長越短越好。感應線應距離覆銅或其它走線要有1mm以上, 線徑選0.15mm~0.2mm,且此接線與其它線不得平行或交叉。
- 2. 覆銅:若觸摸板附近會有無線電信號或高壓器件或磁場,請用20%的網狀接地銅箔覆銅,為 兼顧穿透力和抗幹擾能力,觸摸盤下方盡量避免覆銅。覆銅需距離感應觸摸盤2mm,距離感 應線1mm以上。
- 3. 電源供應必須穩定,若供應電源之電壓發生飄移或快速漂移或移位,可能造成靈敏度異常或 誤偵測。
- 4. 覆蓋在PCB上的板材,不得含有金屬或導電組件的成份,表面塗料亦同。
- 5. 必須在VDD和GND間使用C1電容,建議值10uF或更大;且應采取與裝置IC的VDD和GND接腳最短 距離的布線。
- 6. 可利用Cs電容調整靈敏度,Cs電容值越小靈敏度越高,靈敏度調整必須根據實際應用的PCB 來做調整, Cs電容值的範圍為0~75pF。
- 7. 調整靈敏度的電容(Cs)必須選用較小的溫度系數及較穩定的電容器:如X7R、NPO,故針對 觸摸應用,建議選擇NPO電容器,以降低因溫度變化而影响靈敏度。
- 8. 以上功能選項腳若選擇默認值,建議接到固定電平,如需選擇輸出同步模式,HLD腳建議接到 GND_o

No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

封裝尺寸圖 (DFN-6 2*2)

SYMBOL	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
A	0.70	0.75	0.80	
A1		0.02	0.05	
ь	0. 25	0.30	0. 35	
c	0.18	0.20	0. 25	
D	1. 95	2.00	2. 05	
D2	1.00	1. 23	1. 45	
e	0. 65BSC			
Nd	1. 30BSC			
Е	1. 95	2.00	2. 05	
E2	0.50	0.68	0.85	
L	0. 25	0.30	0.40	
h	0.10	0, 15	0, 20	
関体尺寸 (mil)	63*43			

8